Propedéutico para el ingreso al diplomado Ciencia de datos

ÁREA: DIPLOMADOS Y LÍNEAS DE ESPECIALIZACIÓN

PRESENTACIÓN

La ciencia de datos es una disciplina que se emplea en diversas tecnologías para solucionar problemas en negocios u organizaciones, a través de las matemáticas, la programación y el método científico, que implica el planteamiento de hipótesis, la realización de experimentos y pruebas, el análisis de datos y el desarrollo de modelos predictivos. Este curso se ha diseñado como apoyo a los interesados en capacitarse en la Ciencia de datos.

OBJETIVO

El participante reconocerá el uso de modelos matemáticos para el estudio de fenómenos aleatorios, identificará los conceptos esenciales de las bases de datos y se introducirá al lenguaje de programación Python.

BENEFICIOS

Reforzar conocimientos sobre temas elementales de estadística, bases de datos y programación con Python, para presentar el examen de admisión al diplomado Ciencia de datos

DIRIGIDO A:

Este curso está dirigido a profesionales de las áreas de Matemáticas, Física, Actuaría, Ciencias de la computación, Ingeniería en Computación o afines, que requieran reforzar su perfil de ingreso para presentar el examen de admisión al diplomado Ciencia de Datos.

CONTENIDO

ESTADÍSTICA Y PROBABILIDAD

- 1. INTRODUCCIÓN AL PENSAMIENTO ESTADÍSTICO
- 2. MUESTREO Y ESTADÍSTICA DESCRIPTIVA
 - 2.1 Población

- 2.2 Muestra
- 2.3 Recolección de datos
- 2.4 Medidas de localización
- 2.5 Medidas de variabilidad
- 2.6 Datos discretos y continuos
- 3. PROBABILIDAD
 - 3.1 Espacio muestral
 - 3.2 Eventos
 - 3.3 Métodos de conteo
 - 3.4 Probabilidad de un evento
 - 3.5 Probabilidad condicional, independencia y regla del producto
 - 3.6 Variables aleatorias
- 4. DISTRIBUCIONES DE PROBABILIDAD
 - 4.1 Distribuciones discretas de probabilidad
 - 4.2 Distribuciones de probabilidad continua
 - 4.3 Distribuciones de probabilidad conjunta
 - 4.4 Distribuciones comúnmente usadas
 - 4.4.1 Bernoulli
 - 4.4.2 Binomial
 - 4.4.3 Poisson
 - 4.4.4 Normal
 - 4.4.5 LogNormal
 - 4.4.6 Exponencial
 - 4.5 Teorema del límite central
- 5. INTERVALOS DE CONFIANZA
- 6. INTRODUCCIÓN A LAS PRUEBAS DE HIPÓTESIS

FUNDAMENTOS DE BASES DE DATOS

- 1. MODELO RELACIONAL
 - 1.1 Álgebra relacional
 - 1.2 Introducción a SOL
 - 1.3 Integridad de dominio
 - 1.4 Integridad referencial
- 2. DISEÑO LÓGICO
 - 2.1 Generación del modelo relacional
 - 2.2 Dependencias funcionales
 - 2.3 Normalización

3. CONCEPTOS DE SISTEMA DE GESTIÓN DE BASES DE DATOS RELACIONALES

- 3.1 Arquitectura de dos y tres capas
- 3.2 Propiedades ACID
- 3.3 Concurrencia
- 3.4 Seguridad
- 4. SQL
 - 4.1 Lenguaje de definición de datos (DDL)
 - 4.2 Lenguaje de manipulación de datos (DML)
 - 4.3 Lenguaje de control de datos (DCL)

5. BASES DE DATOS NOSQL Y CLOUD

- 5.1 Bases de datos NoSQL
- 5.2 Bases de datos en la Nube
- 5.3 Bases de datos Graph
- 5.4 Bases de datos XML
- 5.5 Almacenamiento Key-Value y Bases de datos de documentos
- 5.6 Almacenamiento columnar
- 5.7 Bases de datos orientadas a objetos

INTRODUCCIÓN A LA PROGRAMACIÓN EN PYTHON

1. FUNDAMENTOS DE PROGRAMACIÓN

- 1.1 Constantes y variables
- 1.2 Tipos de datos
- 1.3 Comentarios
- 1.4 Estructuras de datos
- 1.5 Operaciones aritméticas
- 1.6 Operadores lógicos
- 1.7 Condicionales
- 1.8 La indentación en Python

2. FUNCIONES

- 2.1 ¿Qué es una función?
- 2.2 Usar funciones (built-in functions)
- 2.3 Definir funciones
- 2.4 Scope

3. COLECCIONES

- 3.1 ¿Qué es un método?
- 3.2 Listas
- 3.3 Tuplas

- 3.4 Diccionarios
- 3.5 Conjuntos
- 3.6 Colección de colecciones

4. MANIPULACIÓN DE CADENAS DE TEXTO

- 4.1 Indexación
- 4.2 Concatenación
- 4.3 Formateo
- 4.4 Splitting
- 4.5 Join
- 4.6 Replace
- 4.7 Slicing

5. BUCLES

- 5.1 For Loop
- 5.2 While Loop
- 5.3 Break
- 5.4 Continue
- 5.5 Bucles anidados

6. MANIPULACIÓN DE COLECCIONES

- 6.1 Indexado
- 6.2 List-comprehensions y tuple-comprehensions
- 6.3 Iterables y for loops
- 6.4 Colecciones mutables e inmutables

7. PARADIGMAS DE PROGRAMACIÓN

- 7.1 Principales paradigmas
 - 7.1.1 Procedural Programming
 - 7.1.2 Functional Programming
 - 7.1.3 Object-oriented programming
- 7.2 Clases y objetos
- 7.3 Encapsulación
- 7.4 Abstracción
- 7.5 Polimorfismo
- 7.6 Herencia

8. TÓPICOS AVANZADOS

- 8.1 Recursión
- 8.2 Sorting y Searching
- 8.3 Big-O notation y complejidad
- 8.4 Pilas y colas
- 8.5 Listas enlazadas

DURACIÓN

MODALIDAD

A distancia

FORMA DE TRABAJO

- El curso y la interacción grupal se llevarán a cabo mediante sesiones síncronas a través de una herramienta de videoconferencia, en el horario y el periodo programados.
- Las temáticas serán expuestas a través de presentaciones y diversos medios.
- Se dispondrá de materiales y actividades diseñadas especialmente para el curso.
- Las sesiones no serán grabadas, por lo que el usuario que no participe en alguna es responsable de ponerse al corriente a través de los contenidos dispuestos para tal fin.

EVALUACIÓN

- La calificación mínima aprobatoria es de 8.0
- Se requiere el 80% de asistencia
- Los elementos de evaluación serán indicados por el instructor

RECURSOS INFORMÁTICOS NECESARIOS

- Cuenta de correo electrónico
- Conexión a Internet

HARDWARE:

- Procesador Intel Core i3 o superior
- Memoria RAM instalada de 4GB como mínimo recomendable
- Disco duro: 8 GB
- Pantalla con una resolución de 1024x768 o superior
- Micrófono
- Cámara
- Bocinas o audífonos multimedia

SOFTWARE:

- Microsoft Windows 10 o superior
- Un navegador (Chrome, Microsoft Edge, Mozilla Firefox, etc.), es recomendable utilizar las versiones más actuales
- Adobe Acrobat Reader u otro software libre para abrir los archivos PDF
- Instalar la aplicación de Zoom, la cual se puede descargar de: https://zoom.us/support/download/
- Microsoft SQL Server 2019 Developer Edition